PRIOR AUTHORIZATION POLICY **POLICY:** Lipodystrophy – Myalept Prior Authorization Policy Myalept[®] (metreleptin subcutaneous injection – Aegerion/Amryt) **REVIEW DATE:** 07/03/2024 #### **OVERVIEW** Myalept, a recombinant analog of human leptin, is indicated as an adjunct to diet as replacement therapy to treat complications of leptin deficiency in patients with **congenital or acquired generalized lipodystrophy**.¹ <u>Limitations of Use</u>: The safety and efficacy of Myalept have not been established for the treatment of complications of partial lipodystrophy, liver disease (including nonalcoholic steatophepatitis [NASH]), human immunodeficiency virus (HIV)-related lipodystrophy, or metabolic disease (including diabetes mellitus and hypertriglyceridemia) without concurrent evidence of generalized lipodystrophy. Congenital generalized lipodystrophy is an inherited autosomal recessive disease. AGPAT2 and BSCL2 gene mutations responsible for 95% of currently identified cases, while mutations of CAV1 and the PTRF gene have also been reported, although much less frequently. Several patients with congenital generalized lipodystrophy do not have any of the four known gene mutations, indicating that not all mutations associated with congenital generalized lipodystrophy have been identified. Patients with this condition can experience a variety of complications, such as hyperinsulinemia, diabetes mellitus, hypertriglyceridemia, pancreatitis, fatty liver, and loss of subcutaneous adipose tissue. #### Guidelines Guidelines on the diagnosis and management of lipodystrophy syndromes were published in 2016 and endorsed by multiple groups of endocrine experts, including the Endocrine Society, the Pediatric Endocrine Society, the American Diabetes Association, and the American Association of Clinical Endocrinologists.² These guidelines note that lipodystrophy is an incurable condition and no treatment will regrow adipose tissue. Myalept is the only drug specifically indicated for the treatment of lipodystrophy. Myalept, along with diet, is recommended as the first-line treatment for metabolic and endocrine abnormalities in patients with generalized lipodystrophy. In children, Myalept may also be used to prevent the development of comorbidities. ## POLICY STATEMENT Prior Authorization is recommended for prescription benefit coverage of Myalept. Because of the specialized skills required for evaluation and diagnosis of patients treated with Myalept, as well as the monitoring required for adverse events and long-term efficacy, approval requires Myalept to be prescribed by or in consultation with a physician who specializes in the condition being treated. All approvals are provided for the duration noted below. **Automation:** None. # RECOMMENDED AUTHORIZATION CRITERIA Coverage of Myalept is recommended in those who meet the following criteria: # FDA-Approved Indication - **1. Generalized Lipodystrophy (Congenital or Acquired):** Approve for 1 year if the patient meets ALL of the following (A, B, C, and D): - **A)** Patient meets ONE of the following (i or ii): - i. Patient has **congenital** generalized lipodystrophy and meets ONE of the following (a or b): - **a)** Patient has had a genetic test demonstrating one gene mutation (i.e., AGPAT2, BSCL2, CAV1, or PTRF) confirming the diagnosis of congenital generalized lipodystrophy; OR - **b)** Patient meets BOTH of the following (1 and 2): - (1) Patient has had a genetic test that did not demonstrate an AGPAT2, BSCL2, CAV1, or PTRF gene mutation; AND - (2) A clinical diagnosis of congenital generalized lipodystrophy has been made by a specialist with experience in treating patients with lipodystrophy; OR - ii. Patient has acquired generalized lipodystrophy; AND - **B**) Patient has experienced one or more manifestations of leptin deficiency; AND Note: Manifestations of leptin deficiency include hyperinsulinemia, type 2 diabetes mellitus, and hypertriglyceridemia. - C) Myalept will be used in conjunction with dietary modification; AND - **D)** Medication is prescribed by, or in consultation with, an endocrinologist or a geneticist. ### CONDITIONS NOT RECOMMENDED FOR APPROVAL Coverage of Myalept is not recommended in the following situations: - 1. General Obesity not associated with Congenital Leptin Deficiency. Myalept is contraindicated in patients with general obesity not associated with congenital leptin deficiency. Myalept was previously evaluated in two clinical development programs for obesity, both as monotherapy (n > 1,100) and in combination with Symlin[®] (pramlintide acetate for injection; n > 600). Published studies on the effects of leptin therapy in these patients without leptin deficiency yielded conflicting efficacy results. The studies involving obese patients (some with type 2 diabetes mellitus), with the exception of one dose-escalation trial, failed to show significant weight loss with Myalept therapy and resulted in clinically insignificant changes in other metabolic parameters, such as insulin sensitivity. One additional randomized, double-blind, placebo-controlled crossover study evaluated the efficacy of leptin administration to promote further weight reduction in patients who had undergone Roux-en-Y gastric bypass surgery. Following 16 weeks of therapy, Myalept was not found to promote additional decreases in body weight compared with placebo. - 2. Human Immunodeficiency Virus (HIV)-related Lipodystrophy. Myalept is not indicated for the treatment of patients with HIV-related lipodystrophy. Results from four small studies of patients with HIV-associated lipodystrophy and leptin deficiency showed mixed results with Myalept therapy. One study found significantly improved fasting insulin levels, insulin resistance and high-density lipoprotein (HDL) levels, but no significant differences in fasting glucose levels, free-fatty acid levels, or low-density lipoprotein (LDL) levels when Myalept was compared with placebo. Another demonstrated improved fasting insulin levels, but no difference in intravenous glucose disappearance, fasting serum glucose concentration, glycosylated hemoglobin (HbA_{1C}) levels, body mass index (BMI), or lipid parameters after treatment with Myalept. Two additional studies found that therapy with Myalept improved some, but not all metabolic parameters in patients infected with HIV. More information is needed to determine if Myalept is a safe and effective treatment for HIV-related lipodystrophy. - **3. Partial Lipodystrophy.** The safety and efficacy of Myalept in the treatment of the complications of partial lipodystrophy have not been established.¹ The effects of Myalept therapy in patients with partial lipodystrophy have been evaluated; the pivotal trial of Myalept included a subset of patients (n = 24) with partial lipodystrophy.¹⁶ Overall, patients with partial lipodystrophy had milder baseline metabolic abnormalities than patients with generalized lipodystrophy. Following 12 months of Myalept therapy, patients experienced a reduction in HbA_{1C}, fasting plasma glucose, and fasting triglycerides; however, the magnitude of the improvements was less than those observed in patients with generalized lipodystrophy. There are data showing sustained improvements out to 36 months as well.¹⁷ Additional data also highlight the heterogeneity of partial lipodystrophy; Myalept may provide improvement in some metabolic parameters in certain patients with partial lipodystrophy, but more data are needed to confirm these benefits.¹⁸⁻²⁰ Current lipodystrophy guidelines (2016) outline certain patients with partial lipodystrophy that may benefit from Myalept therapy, but indicate a lower level of evidence to support use in this patient population compared with generalized lipodystrophy.² Myalept prescribing information continues to list partial lipodystrophy as a limitation of use.¹ - **4.** Coverage is not recommended for circumstances not listed in the Recommended Authorization Criteria. Criteria will be updated as new published data are available. #### REFERENCES - 1. Myalept® subcutaneous injection [prescribing information]. Cambridge, MA: Aegerion; February 2022. - 2. Brown RJ, Araujo-Vilar D, Cheung PT, et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. *J Clin Endocrinol Metab.* 2016;101(12):4500-4511. - Zelissen PM, Stenlof K, Lean ME, et al. Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: a randomized, placebo-controlled trial. *Diabetes Obes Metab*. 2005;7(6):755-761. - Ravussin E, Smith SR, Mitchell JA, et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring). 2009;17(9):1736-1743. - 6. Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. *JAMA*. 1999;282(16):1568-1575. - 7. Hukshorn CJ, van Dielen FM, Buurman WA, et al. The effect of pegylated recombinant human leptin (PEG-OB) on weight loss and inflammatory status in obese subjects. *Int J Obes Relat Metab Disord.* 2002;26(4):504-509. - 8. Mittendorfer B, Horowitz JF, DePaoli AM, et al. Recombinant human leptin treatment does not improve insulin action in obese subjects with type 2 diabetes. *Diabetes*. 2011;60:1474-1477. - 9. Moon HS, Matarese G, Brennan AM, et al. Efficacy of metreleptin in obese patients with type 2 diabetes: cellular and molecular pathways underlying leptin tolerance. *Diabetes*. 2011;60:1647-1656. - 10. Shetty GK, Matarese G, Magkos F, et al. Leptin administration to overweight and obese subjects for six months increases free leptin concentrations but does not alter circulating hormones of the thyroid and IGF axes during weight loss induced by a mild hypocaloric diet. *Eur J Endocrinol*. 2011;165(2):249-254. - 11. Korner J, Controy R, Febres G, et al. Randomized double-blind placebo-controlled study of leptin administration after gastric bypass. *Obesity (Silver Spring)*. 2013;21(5):951-956. - 12. Lee JH, Chan JL, Sourlas E, et al. Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipoatrophy and metabolic syndrome induced by the highly active antiretroviral therapy. *J Clin Endocrinol Metab.* 2006;91(7):2605-2611. - 13. Magkos F, Brennan A, Sweeney L, et al. Leptin replacement improves postprandial glycemia and insulin sensitivity in human immunodeficiency virus-infected lipoatrophic men treated with pioglitazone: a pilot study. *Metabolism.* 2011;60(7):1045-1049. - 14. Mulligan K, Khatami H, Schwarz JM, et al. The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. *J Clin Endocrinol Metab.* 2009;94(4):1137-1144. - 15. Sekhar RV, Jahoor F, Iyer D, et al. Leptin replacement therapy does not improve the abnormal lipid kinetics of hypoleptinemic patients with HIV-associated lipodystrophy syndrome. *Metabolism.* 2012;61(10):1395-1403. # Lipodystrophy – Myalept PA Policy Page 4 - 16. Data on file. Myalept™ Product Dossier: Based on AMCP guidelines for formulary submission, version 2.1. Bristol-Myers Squibb/Astra-Zeneca; received March 26, 2014. - 17. Oral EA, Gorden P, Cochran E, et al. Long-term effectiveness and safety of metreleptin in the treatment of patients with partial lipodystrophy. *Endocrine*. 2019;64(3):500-511. - 18. Ajluni N, Dar M, Xu J, et al. Efficacy and safety of metreleptin in patients with partial lipodystrophy: lessons from an expanded access program. *J Diabetes Metab*. 2016;7(3):659. - 19. Simha V, Subramanyam L, Szczepaniak L, et al. Comparison of efficacy and safety of leptin replacement therapy in moderately and severely hypoleptinemic patients with familial partial lipodystrophy of the Dunnigan variety. *J Clin Endocrinol Metab.* 2012;97(3):785-792. - 20. Diker-Cohen T, Cochran E, Gorden P, et al. Partial and generalized lipodystrophy: comparison of baseline characteristics and response to metreleptin. *J Clin Endocrinol Metab.* 2015;100(5):1802-1810. - 21. Mantzoros C. Lipodystrophic syndromes. © 2024 UpToDate, Inc. Available at: https://www.uptodate.com/contents/lipodystrophic-syndromes?search=lipodystrophy&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1#H5. Updated January 20, 2023. Last Reviewed May 2024 Accessed on June 19, 2024.